

30 kW Modular Power Unit for EVSE

OVERVIEW

MPU-R2 is a 30kW modular power supply for EVSE systems.

It features a modular design capable of parallel operation.

VERSIONS

	DC SIDE				
	P U I Protectio				
MPU-R2-920-100-FD	30kW	920V	100A	Fuse, diode	

BLOCK DIAGRAM

FEATURES

- AC connection to standard 400/480 VAC, 50/60 Hz grid. No neutral required.
- Reinforced galvanic isolation between input and output.
- Capable of charging 400V and 800V batteries.
- Integrated forced air cooling with fan speed control.
- 🧳 19" rack, 2U
- CANopen compatible digital bus with advanced control, monitoring and logging capabilities.
- Integrated protections including AC precharge switches, OCP, OTP and UVLO.
- Integrated output fuse and reverse diode.

Product datasheet. The given values are susceptible to change without prior notice.

contact@wattandwell.com +33 1 75 95 11 50 usa@wattandwell.com +1 346-223-0379

Important note: this datasheet contains advanced information about an unreleased product. Values are susceptible to change in significant ways without prior notice

WARNING

This equipment operates at voltages and currents that can result in electrical shock, fire hazard and/or personal injury if not properly handled or applied. Equipment must be used with necessary caution and appropriate safeguards employed to avoid personal injury or property damage.

This board must be used only by qualified engineers and technicians familiar with risks associated with handling high voltage electrical and mechanical components, systems, and subsystems.

Table of Contents

1. Safe	ty instructions	. 6
1.1. Ca	ution	6
1.2 Ins	tallation	6
1.2. Inc	nut rating	6
1.0. Inp	e circuite	0. 6
1. 4 . Liv		. U 6
1.5. HU	ush surrent	.0
		. 1
1.7. Ma	irking	. /
1.8. Ma	Intenance	.8
1.9. Sa	tety related functions	.8
1.10. Pa	rts substitution and modifications	. 8
1.11. En	vironmental condition	. 8
1.12. No	rmative compliance	. 9
2. Abso	plute maximum ratings	10
3. Elec	trical Characteristics	11
31 Ea	rthing system compatibility	12
3.1. La	fo Operating Area	12
3.2. Ja	lie Operating Area	12
3.3. Re	iiddiilly	13
3.4. Ty		13
3.5. 00	tput power derating	14
4. Insta	illation	15
4.1. Me	chanical installation	15
4.1.1.	Handling	15
4.1.2.	Mounting	15
4.2. Ele	ectrical installation	16
4.2.1.	Legal installation	16
4.2.2.	Safety Notice	16
4.2.3.	Protective earth	16
4.2.4.	AC input	16
4.2.5.	LV DC input	16
4.2.6.	DC Output	16
4.2.7.	EMI requirements	17
4.2.8.	Series operation	17
4.3. DIS		17
5. Hard	ware specification	18
5.1. Th	eory of operation	18
5.2. Int	erfaces and supply cables	19
5.2.1.	Low voltage connector	19
5.2.2.	AC side connector	20
5.2.3.	DC side connectors	21
5.2.4.	COM connector	22
5.2.5.	Emergency Shutdown	23
5.2.6.	Address selector and Charge Permission.	23
5.2.7.	Protective Earth	26
5.3. CA		26
5.3.1.		26
5.3.2.	CAIN configuration and dictionary	27
b. Mecl	nanical specifications	33
7. Main	tenance	33

7.1.	Cleaning	
7.2.	Cooling fan	
7.3.	Fuse replacement	
8. (Ordering information	34
8.1.	Product Reference	
8.2.	Product accessories	
8.3.	Related products	

Table of Figures

Figure 3. Output power vs AC line voltage (phase-neutral) 14 Figure 4: Air flow direction 15 Figure 5 MPU-R2 30 kW high level synoptic 18 Figure 6: LV IN connector 19 Figure 7: AC IN connector 20 Figure 8: DC OUT connector 21 Figure 9 : COM connector front view 22 Figure 10: CAN transceiver simplified diagram 22 Figure 11 DSI input circuit 23 Figure 13: CAN transceiver simplified diagram 23 Figure 13: CAN transceiver simplified diagram 23	re 1: Battery Side Safe Operating Area under grid conditions 400V/50Hz at 25°C
Figure 5 MPU-R2 30 kW high level synoptic18Figure 6: LV IN connector19Figure 7: AC IN connector20Figure 8: DC OUT connector21Figure 9: COM connector front view22Figure 10: CAN transceiver simplified diagram22Figure 11 DSI input circuit23Figure 12: Addressing connector (RJ45) front view23Figure 13: CAN transceiver simplified diagram26	e 3. Output power vs AC line voltage (phase-neutral)
Figure 6: LV IN connector19Figure 7: AC IN connector20Figure 8: DC OUT connector21Figure 9 : COM connector front view22Figure 10: CAN transceiver simplified diagram22Figure 11 DSI input circuit23Figure 12: Addressing connector (RJ45) front view23Figure 13: CAN transceiver simplified diagram26	e 5 MPU-R2 30 kW high level synoptic
Figure 7: AC IN connector 20 Figure 8: DC OUT connector 21 Figure 9 : COM connector front view 22 Figure 10: CAN transceiver simplified diagram 22 Figure 11 DSI input circuit 23 Figure 12: Addressing connector (RJ45) front view 23 Figure 13: CAN transceiver simplified diagram 26	e 6: LV IN connector
Figure 8: DC OUT connector 21 Figure 9: COM connector front view 22 Figure 10: CAN transceiver simplified diagram 22 Figure 11 DSI input circuit 23 Figure 12: Addressing connector (RJ45) front view 23 Figure 13: CAN transceiver simplified diagram 26	e 7: AC IN connector
Figure 9 : COM connector front view. 22 Figure 10: CAN transceiver simplified diagram 22 Figure 11 DSI input circuit. 23 Figure 12: Addressing connector (RJ45) front view. 23 Figure 13: CAN transceiver simplified diagram 26	e 8: DC OUT connector
Figure 10: CAN transceiver simplified diagram 22 Figure 11 DSI input circuit 23 Figure 12: Addressing connector (RJ45) front view 23 Figure 13: CAN transceiver simplified diagram 26	e 9 : COM connector front view
Figure 11 DSI input circuit	e 10: CAN transceiver simplified diagram22
Figure 12: Addressing connector (RJ45) front view	e 11 DSI input circuit
Figure 13: CAN transceiver simplified diagram	e 12: Addressing connector (RJ45) front view23
	e 13: CAN transceiver simplified diagram26
Figure 14: Frame sent after having received SYNC on MPU (CAN ID=86)	e 14: Frame sent after having received SYNC on MPU (CAN ID=86)
Figure 15: MPU-R2 assembly drawing	e 15: MPU-R2 assembly drawing
Figure 16: EVI & EVIX integration on EVSE environment	e 16: EVI & EVIX integration on EVSE environment

1. Safety instructions

IMPORTANT SAFETY INSTRUCTIONS

SAVE THESE INSTRUCTIONS - This manual contains important instructions for Models **MPU-R2-920-100** that shall be followed during installation, operation and maintenance of the unit.

1.1. Caution

The following safety instruction must be observed during all phases of operation, service and repair of this equipment. Failure to comply with the safety precautions or warnings in this documentation violates safety standards of design, manufacture and intended use of this equipment and may impair the built-in protections within. WATT & WELL shall not be liable for users to comply with these requirements.

1.2. Installation

MPU-R2 device must be installed following installation chapter.

This product is a safety **Class 1** instrument. To minimize shock hazard, the instrument chassis must be connected to the EVSE frame which is in turn is connected to earth ground

The protective earth terminal must be connected to the safety electrical ground before another connection is made. Any interruption of the protective ground conductor, or disconnection of the protective earth terminal will cause a potential shock hazard that might cause personal injury.

MPU-R2 device is designed to be accessible only for trained staff operators in **restricted access locations.**

1.3. Input rating

CAUTION - To reduce the risk of fire, connect only to a circuit provided with 63 amperes maximum branch circuit overcurrent protection in accordance with the National Electrical Code, ANSI/NFPA 70.

Do not use power supplies which exceed the input voltage rating of this instrument. The electrical rating of this instrument is given into the chapter 3 of this document.

1.4. Live circuits

Operating personnel are not allowed to open the case of this equipment. Internal adjustment or component replacement is not allowed by non-WATT & WELL qualified personnel. Never replace components with cable connected to this instrument. To avoid injuries, always disconnect power and remove external voltage sources before touching components.

1.5. Hot surface

Surface of the product could be hot during and after operation.

To reduce the risk of burns - Do not touch or use adequate protection before touching the device.

1.6. Touch current

CAUTION: A touch current > 3.5 mA AC RMS is possible in case of a fault condition of loss of electrical continuity of the earthing conductor in IT earthing systems.

The minimum size of the protective earthing conductor shall comply with the local safety regulations.

1.7. Marking

Symbol	English	French
Abouting actived apply symbol	Input alternating current	Courant d'entrée alternatif
3	Number of phases input phase	Nombre de phase AC
	Grounding	Prise de Terre
Â	CAUTION - Risk of electric shocks Capacitor stores hazardous energy. Do not remove cover until 5 minutes after disconnecting all sources of supply.	ATTENTION - Risque de choc électrique. Le condensateur accumule de l'énergie dangereuse. Ne pas retirer le couvercle jusqu'à 5 minutes après le débranchement de toutes les sources d'alimentation.
<u></u>	CAUTION- HOT SURFACES To reduce the risk of burns - Do not touch	ATTENTION - SURFACES CHAUDES Pour réduire le risque de brûlures – Ne pas toucher

1.8. Maintenance

Capacitors inside the unit store hazardous energy. Do not remove the cover until 5 minutes after disconnecting all sources of supply.

1.9. Safety related functions

All safety related mechanisms and functions are implemented by hardware. The software does not provide or perform safety-related functions.

1.10. Parts substitution and modifications

Parts substitutions and modifications are allowed by authorized WATT & WELL service personnel only.

For repairs or modification, the unit must be returned to WATT & WELL's After Sale Service. Contact After Sale Service (<u>aftersales@wattandwell.com</u>) to obtain a return merchandise authorization (RMA) number.

WATT & WELL After Sale Service 121 Rue Louis Lumière 84120 PERTUIS France

1.11. Environmental condition

MPU-R2 device safety approval applies to the following operating conditions:

- Integrated into EVSE system (in a 19" cabinet or a custom build enclosure)
- Maximum relative humidity : 95% at 40°C non-condensing
- Altitude

- : up to 2000m
- Pollution degree : 3 Note 1
- Overvoltage category
- : III on AC side : IP2X
- IP degree of enclosure

Protective ground conductor terminal

The charging station where MPU-R2 will be installed should meet the requirements of environmental protection as defined in IEC 61851-1:2019.

The IP degree needs to reach IP44 or above for outdoor use or IP21 for indoor use.

Avoid using the charger in the offshore environment near the sea or near a pollution source or in a corrosive and damaging environment. If you need to use it in the above environment, the protection level of the station needs to reach IP65, otherwise it may lead to the failure of MPU-R2. This damage caused will not be covered by the warranty.

¹ Attention should be paid to avoid ingress of water, metallic or conductive particles, dust or corrosive atmospheric that may cause early failures of equipment.

1.12. Normative compliance

MPU-R2 V1.0.0 and earlier versions meet the intent of directives:

- RoHS: 2011/65/UE
- WEEE: 2012/19/EU

CE

Please note that converters up to **V1.0.0** are not compliant with IEC 61000-6-1/2/3/4 standards and are considered as evaluation kits destined for professionals to be used solely at research and development facilities for such purposes.

Please also note that MPU-R2 is designed to be compatible with the following standards:

Normative	Name	Note
IEC 61851-1:2019 (ed 3.0)	Electric vehicle conductive charging system	
	Part 1: General requirements	
IEC 61851-23 (ed 1.0)	Electric vehicle conductive charging system	
	Part 23: DC electric vehicle charging station	
IEC 61851-23/AC1 2016	Corrections of IEC 61861-23 ed1.0 (2014)	
UL 2202	UL Standard for Safety DC Charging Equipment for Electric	
	Vehicles	

However, it is the user's responsibility to ensure that MPU-R2 is installed and used in compliance with all local country laws and regulations.

In later versions MPU-R2, the compliance with the following directives will be demonstrated:

- Low Voltage: 2014/35/UE
- CEM 2014/30/UE
- RoHS: 2011/65/UE
- WEEE: 2012/19/EU

Normative	Name	Note
	Electromagnetic compatibility (EMC) – Part 6-1:	
NF EN IEC 61000-6-1	Generic standards – Immunity standard for	
	residential, commercial and light-industrial	
	environments	
	Electromagnetic compatibility (EMC)	
NF EN IEC 61000-6-2	Part 6-2: Generic standards	
	Immunity for industrial environments	
	Electromagnetic compatibility (EMC)	
	Part 6-4: Generic standards	
INF EIN IEC 01000-0-3	Emission standard for residential, commercial and	
	light-industrial environments	
	Electromagnetic compatibility (EMC)	
NF EN IEC 61000-6-4	Part 6-4: Generic standards	
	Emission standard for industrial environments	
	Electromagnetic compatibility (EMC) – Part 3-2:	
IEC 61000-3-2	Limits – Limits for harmonic current emissions	
	(equipment input current ≤ 16 A per phase)	
	Electromagnetic compatibility (EMC) – Part 3-3:	
	Limits – Limitation of voltage changes, voltage	
IEC 61000-3-3	fluctuations and flicker in public low-voltage supply	
	systems, for equipment with rated current \leq 16 A per	
	phase and not subject to conditional connection	

MPU-R2 Specification Datasheet

Document Reference: MPU-R2 30 kW (revAL)

IEC 61000-4-11	Electromagnetic compatibility (EMC) - Part 4-11: Testing and measurement techniques - Voltage dips, short interruptions and voltage variations immunity tests for equipment with input current up to 16 A per phase	Criterion B
IEC 61000-4-28	Electromagnetic compatibility (EMC) – Part 4-28: Testing and measurement techniques – Variation of power frequency, immunity test	Criterion A
IEC 61000-4-6:2013	Conducted RF Fields	10Vrms AC line, DC power out, LV power in
IEC 61000-4-4:2012 Electrical fast transient/burst immunity test AC power line		±2KV
IEC 61000-4-5:2014	Surge immunity test AC power line	±2KV common mode ±1KV differential mode
IEC 61000-4-8:2009	Power frequency magnetic field immunity test	30A/m criterion A
IEC 61000-4-3:2006 /AMD1:2007/AMD2:2010	Radiated, radiofrequency, electromagnetic field immunity test	Industrial Level
IEC 61000-4-2:2008	IEC 61000-4-2:2008 Electrostatic discharge immunity test	
CISPR 16-2- 1:2014/AMD1:2017	Conducted emission AC line	Class B
CISPR 16-2-3:2016	Radiated emission	Class B

2. Absolute maximum ratings

Table 1: Absolute maximum ratings

Parameter	Condition	Min	Max	Units
LV Input Voltage		0	27	V
DC side voltage		0	1000	V
AC side voltage (phase-phase)			530	VRMS
Operating Temperature		-30	70	°C
Long term storage Temperature		-30	70	°C
Temperature change rate			5	°C/min
DC output (DC+ or DC-) to PE			±1000	V

Recommended maximum ambient temperature is 50°C, beyond 50°C, linear derating on power output is applied.

3. Electrical Characteristics

All specifications are given for ambient temperature up to 50°C unless otherwise noted.

Table 2: Electrical characteristics

		Value			
Parameter	Condition	Min	Тур	Max	Units
AC side					
Voltage (phase-phase)		207	400 or 480	530	Vrms
Voltage (phase-neutral)		119.5	230 or 277	305	V_{RMS}
Current (per phase)		0		46	A _{RMS}
AC Inrush current				42.4	A _{pk}
Input frequency		42.5	50	69	Hz
Current measurement accuracy	@46Arms			3	%
Voltage measurement accuracy	@400V _{LL}			3	%
Power factor			0.99		
DC side					
Voltage		200		920	V _{DC}
Power				30	kW
Maximum power variation (SW programmable)	Active power			30	kW/s
Current				100	А
Voltage measurement accuracy	@920V			0.5	%
Current measurement accuracy	@50Adc			1.5	%
CAN communication					
CAN baud rate			500		kbps
CAN common mode range ²		-7		7	V
Digital Inputs					
Positive going input current (Charge permission, Address, EMS)		2		10	mA
Negative going input current (Charge permission, Address, EMS)				0.1	mA
Maximum reverse voltage				5.5	V
LV input					
Supply voltage		19	24	27	V
Input current standby			0.2		Α
Input current operation	Fan ON (full speed)		2.5	3	Α
Input current start-up (inrush)	@24V input during 1ms			30	Α
Under Voltage Shutdown (programmable)				19	V
Over Voltage Shutdown (programmable)				27	V
Power consumption		7 ³	60	81 ⁴	W
Insulation					
Input (AC) to output (DC)	50/60 Hz, 1 min		3400		VRMS
Input (AC) to case (PE)	50/60 Hz, 1 min		3400		VRMS
Output (DC) to case (PE)	50/60 Hz, 1 min		3400		V _{RMS}
Y-capacitor DC+ to PE or DC- to PE				35	nF

² CAN common mode; CAN_H and CAN_L versus CAN_GND

³ Standby mode operation

⁴ Three-phase charging with fans at full speed and 27V input voltage

3.1. Earthing system compatibility

The charger is compatible with TT, TN and IT earthing systems.

3.2. Safe Operating Area

MPU-R2 automatically adjusts its operation to the typical operating zone of an EV battery and can charge 400V nominal EV batteries with a voltage range of [250V; 550V] and 800V nominal EV batteries with a voltage range of [500V; 920V].

MPU-R2 can reconfigure between 400V and 800V configuration in less than 3sec

The Safe Operating Area (SOA) is shown in Figure 1.

Figure 1: Battery Side Safe Operating Area under grid conditions 400V/50Hz at 25°C

3.3. Reliability

Table 3: Reliability characteristics

		Value			
Parameter	Condition	Min	Тур	Max	Units
Expected life of fan	L10 acc. to IPC 9591 at TU = 40 °C		105,000		hours
MTBF	Ambient temperature 40°C		500,000		hours

3.4. Typical efficiency

MPU-R2 is based on highly efficient full SiC (Silicon Carbide) technology. Peak efficiency reaches more than 96% and efficiency is consistently above 94% for a wide range of battery voltage and current.

Figure 2: Typical efficiency in three-phase mode under grid conditions 400V/50Hz at 25°C

3.5. Output power derating

MPU-R2 is sized for 31.5kVA (AC side power) at 230V (line to neutral)

- Below 230V, power is limited by max current 46 Arms
- Above 230V, power can be kept constant

Figure 3: Output power vs AC line voltage (phase-neutral)

4. Installation

The unit must be properly assembled in accordance with the assembly instructions before it is used.

Do not use or install MPU-R2 product in case of visible physical damage.

MPU-R2 should be installed in EVSE that complies with frame and enclosure requirement of UL2202.

4.1. Mechanical installation

4.1.1. Handling

MPU-R2 product has a weight of about 22 Kg. For correct handling, follow instruction below:

- The product must be handled flat.
- For operator safety use personal protective equipment.
- Do not stack units (each unit should be self-supported and secured with the front and rear brackets)

4.1.2. Mounting

MPU-R2 can be mounted on standard 19" cabinets.

Note that the MPU-R2 is a heavy instrument and requires the cabinet to be equipped with slides or rails that support the chassis along the depth.

Minimum air flow required for air cooling is 5.6 m³/min (200 CFM)

Recirculating of hot air should be minimized by ensuring fresh (cold) on the input (see Figure 4). In addition, minimum distances for air cooling are:

- 15 cm for front side
- 9 cm for rear side

Figure 4: Air flow direction

4.2. Electrical installation

4.2.1. Legal installation

Electrical installation shall comply with international standards such as IEC or the requirements in national standards of each country.

4.2.2. Safety Notice

Never invert the polarity of the connector. Never force to place a connector. Use only approved manufacturer parts for electrical or mechanical connection.

It is strongly recommended to fix the cables to avoid any stress on the connection. All high-power connectors must be screwed up to avoid any disconnection.

Be careful if other devices are connected, there is a risk of electrical charge transfer.

It is forbidden to open the cover. Only W&W approved personnel are allowed to do maintenance operation. waiting time after complete suppression of input voltage before opening the device should be respected.

4.2.3. Protective earth

MPUR2 should be referenced to the EVSE frame which is in turn is connected to earth ground Any interruption of the protective ground conductor, or disconnection of the protective earth terminal will cause a potential shock hazard that might cause personal injury or death. Protective earth connection is made through AC input connector.

Use the protective earth terminal with minimal characteristics:

- Wire section (minimal): 16 mm²

In addition, all parts of the chassis where MPU-R2 is to be installed (i.e., the 19" cabinet) need to be grounded. An electrical connection to "G" through mechanical parts must be done.

4.2.4. AC input

AC input is defined as three phases line without neutral.

MPU-R2 product must be protected against short circuit, overload protection and earth leakage current protection with external devices.

AC input wires must be connected through a residual current breaker (RCB) and a circuit breaker (MCB) with short circuit protection and thermal overload protection:

- Class B recommended. Class A is also possible since all grid inputs are double isolated from PE.
- Earth leakage 30mA (lower rating also possible, please consult factory)
- Current rating 63 A
- Number of contacts: 3 or 4

4.2.5. LV DC input

LV input must be connected to 24Vdc bus. This input must be protected with a rapid fuse 20A rating.

This cable must be shorter than 3m.

4.2.6. DC Output

DC output is galvanically isolated from protective earth. This cable must be shorter than 30 m.

4.2.7. EMI requirements

Converters are designed to be compliant with IEC 61000-6-1/2/3/4 standards.

- EMI emissions
 - Conducted emissions: class B
 - Radiated emissions class B
- EMI immunity
 - IEC EN 61000-6-2: Immunity standard for industrial environments
 - IEC EN 61000-6-1: Immunity standard for residential, commercial and lightindustrial environments

However, Integrator is responsible to use best practice for final system to maintain compliance.

Part numbers of ferrite clamps for inclusion on power supply and data lines, to ensure compliance with conducted and radiated emissions standards, will be provided in future releases of the datasheet.

4.2.8. Series operation

Series operations of MPU-R2 is not allowed. Consult factory if series connection is required.

4.3. Disposal

(Mandatory application within the European Union)

Do not dispose of electronic tools tighter with household waste material. In accordance with WEEE European Directive (2012/19/UE), Electric material that has reached the end of their life must be collected separately and return to an environmentally compatible recycling facility.

Please contact WATT & WELL for any questions about WEEE.

5. Hardware specification

5.1. Theory of operation

MPU-R2 consist of 2 power converting stages:

- Bidirectional Active Front End (or PFC) that interfaces the AC grid. This PFC uses a threephase topology
- DC/DC converter that performs galvanic isolation and DC side regulation. It is based on a full SiC resonant topology

Figure 5 MPU-R2 30 kW high level synoptic

5.2. Interfaces and supply cables

Please note that the supply cables of the converter shall be chosen to have an ampacity based on Table 310-16 of the National Electrical Code, ANSI/NFPA 70 of no less than 125 percent of the maximum current that the circuit carries during rated conditions; and that a wiring terminal are provided with a pressure terminal connector that is securely held by a screw.

Please use an ordinary tool for securing all conductors.

5.2.1. Low voltage connector

Located on the front panel. Cable connected to these ports must be less than 3m long. The LV connector is used to power the fans and control independently the converter

Connector Reference (converter side):

- Phoenix Contact MSTB 2,5/ 2-GF-5,08 1776508 (UL approval 300V/15A)
- TIELEE: TLPHW-200R-02P-G12 (UL approval 300V/16A)

Recommended matting connectors (wire harness side):

Side	Connector	Manufacturer	Wire	Ferrule	Crimping tool
LV	MSTB 2,5/ 2-STF- 5,08 – 1777989 (Screw terminal)	Phoenix contact	1 mm2	A 1 -6 Ref 3200247	Phoenix Contact 1212034 CRIMPFOX 6
LV	TLPSW-200V- 02P-G12S	TIELEE	1 mm2	A 1 -6 Ref 3200247	Phoenix Contact 1212034 CRIMPFOX 6

Figure 6: LV IN connector

PIN	FUNCTION	DESCRIPTION	Preferred wiring color
#1	LV_IN-	Low Voltage supply return (0V typ)	Black
#2	LV_IN+	Low Voltage supply (24V typ)	Red

5.2.2. AC side connector

Located on the front panel.

Connector Reference (converter side):

- Phoenix Contact: PC 35 HC/4-GF-15,00-1762767 (UL approval 600V/115A)
- or
 - TIELEE: TLPHW-900R-A394-04P-G17 (UL approval 600V/115A)

Recommended	matting	connectors	(wire	harness	side):
			(0.0.0/.

Side	Connector	Manufacturer	Wire	Ferrule	Crimping tool
AC	PC 35 HC/ 4-STF-15,00 Ref: 1762615	Phoenix contact	16 mm2	A 16 -25 Ref 1090632	Phoenix Contact CRIMPFOX 25R Ref 1212039
AC	TLPSW-900V-A394-04P- G12C	TIELEE	16 mm2	CN160018	Phoenix Contact CRIMPFOX 25R Ref 1212039

Figure 7: AC IN connector

PIN	FUNCTION	DESCRIPTION	Preferred wiring color
#1	L1	Mains line 1	Brown
#2	L2	Mains line 2	Black
#3	L3	Mains line 3	Grey
#4	PE	Protective Earth	Green/yellow striped

5.2.3. DC side connectors

Located on the back panel. Cable connected to these ports must be less than 30m long. Connector Reference (converter side):

- Phoenix Contact: PC 35 HC/ 3-GF-15,00 BK 1762754 (UL approval 600V/115A: middle pin left NC)
- TIELEE: TLPHW-900R-A425-02P(G17) (3 pins connector with pin removed. UL approval 115A)

<u>Recommended matting connectors</u> (wire harness side):

Side	Connector	Manufacturer	Wire	Ferrule	Crimping tool
DC	PC 35 HC/ 3-STF-15,00 Ref: 1762602	Phoenix contact	35 mm2	A 35 -20 Ref 3200409	Phoenix Contact CRIMPFOX 50R Ref 1212041
DC	TLPSW-900V-A425- 02P(G12C)	TIELEE	35 mm2	CN350018	Phoenix Contact CRIMPFOX 50R Ref 1212041

Figure 8: DC OUT connector

PIN	FUNCTION	DESCRIPTION	Preferred wiring color
#1	DC_OUT+	DC Output (positive)	Red
#2	NC	Not connected	
#3	DC_OUT-	DC Output return (0)	Black

5.2.4. COM connector

MPU-R2 features a galvanically isolated CAN bus for digital communications with other boards. The COM connector is an RJ45 connector. Cable connected to these ports must be less than 3m long.

Figure 9 : COM connector front view

Table 4 – COM connector pinout

PIN	FUNCTION	DESCRIPTION		
1	CAN H	CAN differential +		
2	CAN L	CAN differential -		
3	GND_ISO	Ground reference for CAN		
4	EM_SHUT_RTN	Emergency Shutdown return line (negative)		
5	EM_SHUT	Emergency Shutdown (positive)		
6	NC	Not Connected		
7	GND_ISO	Ground reference for CAN		
8	8 ES_R/W Read/write pin in case of daisy chained power un (Mandatory to keep floating)			

Note on CAN bus termination: CAN bus is expected to be terminated at each bus end with a 120 Ω resistance. Wiring should be selected to have an intrinsic impedance of the twisted that match this 120 Ω .

By default, MPU-R2 does not include any 120 Ω resistor to avoid overloading the bus when multiple nodes are presents.

Figure 10: CAN transceiver simplified diagram

Note on CAN bus shield: Although ISO 11898-2 does not specify the wires type or the need for a shield, a shielded cable is recommended for electronically harsh environments. It is recommended to ground the shield at a single point on the dedicated shield pin of the COM connector to avoid ground loops.

Also, remember that the CAN bus being isolated, the CAN_GND should be wired between nodes.

5.2.5. Emergency Shutdown

The COM connector also transmits an **Emergency Shutdown** (EM_SHUT) signal. This signal can be used to trigger an unconditional shutdown of the MPU-R2 operation. See Table 4 for the pinout of EM_SHUT within the COM connector.

In addition, a fast discharge circuit is enabled to discharge the internal output capacitors to a safe level (<<60V) in less than 1 second.

EM_SHUT logic is as follows:

- "floating": Emergency Shutdown triggered (EM_SHUT=1)
- 12V or 24V: normal operation (EM_SHUT=0)

The simplified circuit of the EM_SHUT is given in Figure 11.

Figure 11 DSI input circuit

5.2.6. Address selector and Charge Permission.

Each MPU-R2 takes its CAN **address** at boot based on the Addressing connector on the front panel.

Figure 12: Addressing connector (RJ45) front view

Table 5: Addressing connector pinout

PIN	FUNCTION	DESCRIPTION			
1	ADDR0	Address bit 0			
2	ADDR3	Address bit 3			
3	ADDR1	Address bit 1			
4	ADDR4	Address bit 4			
5	ADDR2	Address bit 2			
6	GND_ISO	Return			
7	CHARGE_P	Charge Permission			
8	UNUSED	Not used			

Default value of each unconnected line is logic '0'. An addressing line tied to GND_ISO is logic '1'.

Each MPU-R2 takes its CAN address at boot based on the Addressing connector on the front panel. If ADDR0= ADDR1= ADDR2= ADDR3= ADDR4=0 \rightarrow CAN ID=111 (default value) Else

CAN ID = 80+2°(ADDR0)+2¹(ADDR1) +2²(ADDR2) +2³(ADDR3) +2⁴(ADDR4) -1

ADDR4	ADDR3	ADDR2	ADDR1	ADDR0	CAN ID (dec)
0	0	0	0	0	111
0	0	0	0	1	80
0	0	0	1	0	81
0	0	0	1	1	82
0	0	1	0	0	83
0	0	1	0	1	84
0	0	1	1	0	85
0	0	1	1	1	86
0	1	0	0	0	87
0	1	0	0	1	88
0	1	0	1	0	89
0	1	0	1	1	90
0	1	1	0	0	91
0	1	1	0	1	92
0	1	1	1	0	93
0	1	1	1	1	94
1	0	0	0	0	95
1	0	0	0	1	96
1	0	0	1	0	97
1	0	0	1	1	98
1	0	1	0	0	99
1	0	1	0	1	100
1	0	1	1	0	101
1	0	1	1	1	102
1	1	0	0	0	103
1	1	0	0	1	104
1	1	0	1	0	105
1	1	0	1	1	106
1	1	1	0	0	107
1	1	1	0	1	108
1	1	1	1	0	109
1	1	1	1	1	110

	CAN ID (dec)	CAN ID (hex)	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0
MPU 0	80	0x50	х	х	0%	0%	100%
MPU 1	81	0x51	х	х	0%	100%	0%
MPU 2	82	0x52	х	х	0%	100%	100%
MPU 3	83	0x53	х	х	100%	0%	0%
MPU 4	84	0x54	х	х	100%	0%	100%
MPU 5	85	0x55	х	х	100%	100%	0%
MPU 6	86	0x56	х	х	100%	100%	100%
MPU 7	87	0x57	х	х	0%	0%	50%
MPU 8	88	0x58	х	х	0%	50%	0%
MPU 9	89	0x59	х	х	0%	50%	50%
MPU 10	90	0x5A	х	х	50%	0%	0%
MPU 11	91	0x5B	х	х	50%	0%	50%
MPU 12	92	0x5C	х	х	50%	50%	0%
MPU 13	93	0x5D	х	х	50%	50%	50%

For backward compatibility with MPU-R3-500-63-FD product, 14 units can be addressed using PWM signals with EVIX-AD14 (check Related products) as follows:

"**Charge Permission**" signal: CHARGE_P2. This signal can be used as a redundant stop signal in such way MPU-R2 stops operation when it receives a stop instruction by either "Charge Permission signal" or "CAN communication message". This functionality helps achieve compliance with safety features of some EV charging protocols like CHAdeMO. It is <u>disabled by defaul</u>t. When Charge Permission is enabled, logic levels are defined as

- '0' or floating: no output (forbidden operation). If a start message is received by CAN, a fault will be generated.
- '1' or shorted to GND_ISO: charge permission OK (system can start if a CAN message is received)

"**ES_R/W**" signal: should be kept floating by user on CAN connector side. It is used to disable the charging process of all units chained together in case of a fault on one unit.

<u>LEDs</u>

4 LEDs on front panel indicate the status of the system

Table 6: LED overview

LED	COLOR	FUNCTION	Description		
1	Red	Fault	Indicates a fault in the system. System stops as a result		
2	Green	Safe C	Blinking at 5Hz: Safe C mode. AC voltage is out of range. Output power is set off and the charger remains waiting for AC voltage to return within acceptable range		
3	Green	DC output	Continuous: System in charge mode		
4	Yellow or	Voltage	Slow blink: Auxiliary voltage only (24V)		
4	Orange	presence	Continuous: Grid voltage and Auxiliary voltage		

5.2.7. Protective Earth

Protective Earth is connected through the AC input connector in the rear panel to the rack chassis.

5.3. CAN communication

5.3.1. CAN transceiver

An isolated CAN transceiver is implemented to communicate through a high-speed CAN with other boards.

CAN bus is expected to be terminated at each bus end with a 120 Ω resistance. Wiring should be selected to have an intrinsic impedance of the twisted that match this 120 Ω . By default, MPU-R2 does not include any 120 Ω resistor to avoid overloading the bus. External 120 Ω bus termination could be needed to ensure proper work.

Figure 13: CAN transceiver simplified diagram

5.3.2. CAN configuration and dictionary

CAN baud rate

CAN 2.0A cadenced at 500kbit/s with little endian byte order.

Node ID

See section Address selector and Charge Permission.

Heartbeat frame

MPU-R2 automatically transmits its communication state at regular intervals as evidence of its communication ability. This frame is sent every 1 sec.

MPU-R2 also consumes the heartbeat of its master (expected to have the node ID 0x1). So, the master shall emit every 1 second a heartbeat frame with an *operational* status. If this frame is not received by the MPU, the charge will be stopped and the MPU will get into fault state.

For example, if the CAN ID is x56:

Node	Frame ID	ID offset	DLC	Byte 0
MPU-R2	x756	x700	1	MPU-R2 Status
Master	x701	x700	1	MasterStatus

- Frame ID = Node ID + ID offset
- Status = 0 at bootup (1 frame with 0 to be sent at boot)
- Status = 5 when node communication stack is operational (to be sent periodically)
- Status = 4 when node communication stack is stopped (to be sent periodically)
- Status = 127 when node communication stack is pre-operational (to be sent periodically)

Sync frame

To trigger synchronous sending of frame, MPU-R2 is sensible to a SYNC message.

Frame ID	DLC
x80	0

Receive Process Data Object (RPDO)

The RPDO frame is the control frame. MPU state and setpoints are sent by the master.

For example, if the CAN ID is x56:

Frame ID	ID offset	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4
x256	x200	7	StateRequestWord	itfc_output_cu	irrent_setpoint	itfc_output_vo	tage_setpoint

Byte 5	Byte 6	Byte 7
itfc_output_cu		

Transmit Process Data Object (TPDO)

Frames sent from MPU to master

Frame ID	ID offset	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
x1D6	x180	6	itfc_curre	ent_state		itfc_critical	_fault_word			
x2D6	x280	8	itfc_v	_grid	itfc_i_	_grid	itfc_P	_grid	itfc_availab	le_i_batt
x3D6	x380	8	itfc_v	_batt	itfc_i_	batt	itfc_P	_batt	itfc_i_gric	l_max
x4D6	x480	8	itfc_v_b	att_min	itfc_v_ba	att_max	itfc_i_ba	itt_max	itfc_P_bat	tt_max

Figure 14: Frame sent after having received SYNC on MPU (CAN ID=86)

- Frame ID = Node ID + ID offset
- Each TPDO is transmitted after reception of N number of Sync message. This number is defined by the transmission type parameter of the TPDO. For MPU, transmission type for TPDOs are defined in the following table

Table 7: TPDOs transmission type

TPDO number	Transmission type
TPDO1	1
TPDO2	1
TPDO3	1
TPDO4	1

Emergency frame

Emergency frame is sent asynchronously by MPU in case of default.

Frame	ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte	Byte	Byte	Byte
ID	offset						4	5	6	7
xD6	x80	8	Error	code	Error register	Unused		Da	ta	

- Frame ID = Node ID + ID offset
- <u>Error Code</u>: 0xFF01 if the MPU is in Fault mode. Other Error codes due to communication stack are defined by CANopen.
- Error Register. To be ignored, if the MPU is in Fault mode
- <u>Data:</u> if the MPU is in Fault mode, data = CriticalFaultWord. If not, it should be ignored.

Data unit and type definition

Messages data types and units are defined in the table below

Table 8: Frame data definition

Signal	Definition	LSB value	Unit	Data type	r/w (from master point)	Frame
StateRequestWord	The request word	See Request word def	NA	Uint8	w	RPDO0
itfc_output_voltage_ setpoint	Output voltage setpoint (battery side)	0.1	V	Uint16	w	RPDO0
itfc_output_current_ setpoint	Output current setpoint (battery side)	0.01	A	Uint16	w	RPDO0
itfc_input_grid_ max_current	Grid current limitation setpoint	0.01	A	int16	w	RPDO0
itfc_current_state	The status word	See StatusWord def	NA	Uint32	r	TPDO0
itfc_critical_fault_word	The fault word	See FaultWord def	NA	Uint32	r	TPDO0
itfc_v_grid	Grid voltage	0.1	V	int16	r	TPDO1
itfc_i_grid	Grid current	0.01	A	int16	r	TPDO1
itfc_P_grid	Grid power	1	W	int16	r	TPDO1
itfc_available_i_batt	Available battery side current	0.01	А	int16	r	TPDO1
itfc_i_grid_max	Max allowed grid current	0.01	A	Uint16	r	TPDO2
itfc_v_batt	Output voltage (battery side)	0.1	V	int16	r	TPDO2
itfc_i_batt	Output current (battery side)	0.01	A	int16	r	TPDO2
itfc_P_batt	Output power (battery side)	1	W	int16	r	TPDO2
itfc_v_batt_max	Max allowed output voltage	0.1	V	Uint16	r	TPDO3
itfc_i_batt_max	Max allowed output current	0.01	A	Uint16	r	TPDO3
itfc_P_batt_max	Max allowed output power	1	W	Uint16	r	TPDO3
itfc_v_batt_min	Min allowed output voltage	0.1	V	int16	r	TPDO3

Status word definition

Table 9: Status Word

Bit	Flag name	Flag definition
0:3	System Mode	State, see SystemState_e enum explanation
4	SafeCFlag	Set to 1 if phase voltages are not within the static voltage range
5	FuseAmbTempDeratingFlag	Set to 1 if t temperature 1 is used in power derating
6	MagneticsTempDeratingFlag	Set to 1 if t temperature 2 is used in power derating
7	PfcMOSTempDeratingFlag	Set to 1 if t temperature 3 is used in power derating
8	CurrentRegulationFlag	Set to 1 if PU is limited by max Current
9	VoltageRegulationFlag	Set to 1 if PU is limited by max Voltage
10	ActivePowerRegulationFlag	Set to 1 if PU is limited by max Power
11	PfcOnFlag	Set to 1 if PFC is ON
12	DcdcOnFlag	Set to 1 if DCDC is ON
13	InputCurrentLimitationFlag	Set to 1 if PU is limited by input current
14	OutputLoadImpedanceLimitationFlag	Set to 1 if MPU is limited by output load impedance
15	ThermalLimitationFlag	Set to 1 if PU is limited by thermal heating

Some intermediate sub-states exist in the state machine that are also accessible through the status word. Although these sub-states are transparent to the user, they are documented on Table 11: System substates definition for completeness.

Table 10:	System	states	definition
-----------	--------	--------	------------

Value	Name	Definition
0	STATE_INIT	System is starting
1	STATE_STANDBY	Power is off, system waits a request
3	STATE_POWER_ON	System ready to start
4	STATE_LOCK_DSP	The ACDC waits for DCDC Standby mode status
5	STATE_CHARGE	Charge on going
6	STATE_STOPPING	Converter is stopping and power is being killed off
7	STATE_SAFE_D	Critical fault occured, system halted in this mode until user action.
8	STATE_SAFE_C	Converter is in safeC mode

Table 11: System substates definition

Value	Name	Definition
0	SUBSTATE_INIT	System is starting
1	SUBSTATE_STANDBY	Power is off
2	SUBSTATE_PFC_PASSIVE_PRECHARGE	Precharge realys are closed, system is precharging the DC link bus
3	SUBSTATE_PFC_PASSIVE_PRECHARGE_ DRIVER_ON	Passive precharged is completed, power legs pwm drivers are on
4	SUBSTATE_PFC_ACTIVE_PRECHARGE	DC link voltage and soft start condition are checked, systems starts pfc closed loop control to complete active precharge.
5	SUBSTATE_PFC_CHARGING	DCDC is ready and in charging mode
6	SUBSTATE_SAFE_C	System is stopped and remains waiting for Safe C condition clearance
7	SUBSTATE_STOPPING	System is requested to stop, power is still on
8	SUBSTATE_SAFE_D	Critical fault occured, system halted in this mode until fault clearence or STANDBY request
9	SUBSTATE_LOCK_DSP	The ACDC waits for DCDC Standby mode status
10	SUBSTATE_FAULT_ACK	Fault acknowledgement

The DCDC converter is supervised by an inner state machine that is controlled by the charger state machine. The DCDC states are presented in Table 12: DCDC states definition.

Table 12: DCDC states definition

Value	Name	Definition
0	STATE_DCDC_INIT	System is starting
1	STATE_DCDC_STANDBY	Power is off, system waits a request
2	STATE_DCDC_POWER_ON	System ready to start
3	STATE_DCDC_CHARGE	Charge on going
4	STATE_DCDC_SAFE_D	Critical fault occured, system halted in this mode until user action.
5	STATE_DCDC_STOPPING	Converter is stopping and power is being killed off
6	STATE_DCDC_LOCK_DSP	The DCDC waits a request for Standby mode
7	STATE_DCDC_FAULT_ACK	DCDC fault acknowledgement

Fault Word code

In order to prevent the system from failure event which could damage product, MPU-R2 has several securities faults. These faults statuses are indicated in bit-wise word "FaultWord" defined as follow:

Table 13: Fault word definition

Bit	Fault	Description		
0	Over_current_L1	Over-current protection on phase 1		
1	Over_current_L2	Over-current protection on phase 2		
2	Over_current_L3	Over-current protection on phase 3		
3	Over_voltage_grid	Over-voltage protection on phase 1/2/3		
4	unused	unused		
5	unused	unused		
6	Under_voltage_L1	Under-voltage protection on phase 1		
7	Under_voltage_L2	Under-voltage protection on phase 2		
8	Under_voltage_L3	Under-voltage protection on phase 3		
9	OV_Regul_v_batt	DC output voltage regulation loss		
10	OV_v_bus	Over-voltage protection on intermediary Bus		
11	OV_v_batt	Over-voltage protection on battery		
12	OV_v_batt _1	Over-voltage protection on battery voltage of DCDC 1		
13	OC_i_batt	Over-current protection on battery		
14	OC_i_batt _1	Over-current protection on battery current of DCDC 1		
15	UV_PFC_precharge_failure	Under-voltage precharge failure		
16	unused	unused		
17	shutdown_temp_mos_dcdc1	Thermal shutdown on DCDC 1 mosfets		
18	shutdown_temp_mos_dcdc2	Thermal shutdown on DCDC 2 mosfets		
19	shutdown_temp_xfo_DCDC	Thermal shutdown on DCDC transformers		
20	shutdown_temp_diodes_DCDC	Thermal shutdown on DCDC diodes		
21	shutdown_temp_PFC	Thermal shutdown on PFC mosfets		
22	shutdown_temp_amb	Thermal shutdown on ambiant temperature		
23	unused	unused		
24	UVP_Aux_LV	Under-voltage protection on LV auxiliary power supply		
25	emergency_shutdown	Emergency shutdown input triggered		
26	device_timeout	No reception of master heartbeat frame for more than timeout period		
27	dcdc_pfc_com_loss	Communication loss between PFC and DCDC		
28	dcdc_pfc_com_errors	Communication errors between PFC and DCDC		
29	chargeP	No charge permission input		
30	address_selection	No valid address selected		
31	discharge failure	Output capacitor discharge failure		

6. Mechanical specifications

MPU-R2 30kW is packaged in a 2U (88.9 mm). standard 19" (482.6mm) rack. The total length from front to rear panel is 563.2mm (excluding handles).

Figure 15: MPU-R2 assembly drawing.

7. Maintenance

It is forbidden to open the product.

7.1. Cleaning

Use a soft cloth for cleaning the device. Do not use cleaning agent. Internal dust could be removed with vacuum cleaner or dry air cleaning.

7.2. Cooling fan

Cooling fans are internally controlled. Do not obstruct apertures on the case side.

7.3. Fuse replacement

DC side is protected by an adequate fuse. Fuse replacement is only allowed by WATT & WELL qualified personnel. Return product to factory for replacement.

8. Ordering information

8.1. Product Reference

	Status	Р	AC side	DC side	Other
MPU-R2-920-100	Under development	30 kVA	3Ф	920V, 100A	x

8.2. Product accessories

WA048 – Set of matting connectors for MPU-R2 AC side, DC side and LV side. Unwired • LV Side: MSTB 2,5/ 2-STF-5,08 - 1777989 • AC side: PC 35 HC/ 4-STF-15,00 - 1762615 • DC side: PC 35 HC/ 3-STF-15,00 - 1762602	
WA050 – Pre-wired AC harness 63A for MPU-R2 with 10mm ² color-coded wire and IEC 60309 63A plug (3P+PE) Cable length: 2.5m	
WA051 – Pre-wired DC harness for MPU-R2 with 25mm ² color-coded wire and M6 lug termination Cable length: 2.5m	
WA016 – Pre-wired LV harness With color-coded 4mm insulated banana plug Cable length: 2.5m	
WA007 – CAN bus adaptor from RJ45 to DB9 including 120 Ω termination resistance	

WA052 – Set of harness for MPU-R2 AC side, DC side and LV side wired harness + communication adapter: • LV Side: WA016 • AC side: WA050 • DC side: WA051 • COM: WA007	
WA009 – USB to CAN transceiver (Kvaser) Compatible with MPU Monitor	
WA049 – MPU monitor license (USB license dongle) A Windows based GUI (Graphical User Interface) for easy access to measurements, monitoring and configuration parameters. It can be used to control MPU-R2 as a PC based master or to speed-up integration of a dedicated system master.	

Document Reference: MPU-R2 30 kW (revAL)

8.3. Related products

EVI is a dual standard Supply Equipment Communication Controller (SECC) with all required signals for CCS2 /Combo and CHAdeMO communications.

Main features:

- CCS protocol compatible
 - o ISO15118-2 and ISO15118-20
- CHAdeMO compatible (via Extension board)
 - Version 0.9 & 1.2
- Insulation Measurement Device according to IEC61557-8
- High voltage 920V charging.
- OCPP 1.6 and soon OCPP 2.0.1
- Smart Charging & V2G charging modes
- Cable temperature measurement
- Crypto ready with Secure Element embedded

EVIX – EVI Extension board:

An optional extension board (EVIX) can add additional functions such as:

- EVIX-AD6: Addressing of 6 power units
- EVIX-AD14: Addressing of 14 power units
- EVIX-AD6-CHA: CHAdeMO HW interface & Addressing 6 power units
- EVIX-IO: Peripheral extension board

Figure 16: EVI & EVIX integration on EVSE environment

Other customization options available under request

contact@wattandwell.com +33 1 75 5 11 50