HIGH POWER SERIES

WAI T
&VVELL

CONVERTING POWER INTO CONFIDENCE

MPU series ANOO1 rev AA

Application Note — Interfacing with CAN bus

Table of Contents

O 10 {0 Yo [6T 3 1 T o NN PR 2
2 References and Required TOOIS...........oooiiiiiiiiiiii 3
200 T I To o I 1 1= 1 £ 3
P ©F N\ 1 o1 (=1 = o3 < PR 3
2.3 Communication development ENVIFONMENToiiiiiiiiiiice e 3
A A €10 | I =Y 0 \V/1 (0] 210 1] 1 ST PP 3
2.5 MONITOMNG SOfWAIE.....cuuiiiiei i e e e e e e e e e et e e e e e e e e e e rra b e e aeaaeas 3
2.6 Network configuration and CAN WIFINGcouuiiiiiii e 4
2.7 CAN WITINQ ettt 4
P2 T ©F AN \\ [o To o [T | B TSP 4
2.9 MeESSAQES UESCIPLON ..uvtiii i e e e e e e e e s e e e e e e e ettt e e e e e e e e eerrrtaaaaeeaes 4
I 000010 18T a1 Tex= 1 A (o] a1 (1] £SO 5
3.1 Communication using PYthon SCHPL........cooiiiiiiiie e 5
3.2 CAN MESSAQES MONITOMNG......cciiiiiiiiiiii e e ee e eeeee e e e e e e e e e e e e e e et e e e e e e e e e eerrrtaaaaeaaeas 9
3.3 Critical fault world iNterpretationcoiiiiiiiiiie e 13
R o 0 1o [F= 1] g TSI T= TP 14

Product application note. The given values are susceptible to change without prior notice.

contact@wattandwell.com usa@wattandwell.com wattandwell.com
+33175951150 +1 346-223-0379 Revision date: 01/2021

mailto:contact@wattandwell.com
http://www.wattandwell.com/
http://www.wattandwell.com/

WAT T Document Reference:

Application Note — Interfacing with CAN bus \pu series AN0OO1
8(\/VEI_I_ rev AA

1 Introduction

This document describes CANopen protocol structure and configuration for MPU series chargers.
The main purpose is to explain how to build necessary CAN messages to control Modular Power
Unit without employing any specific CANopen stack.

MPU series chargers are 25 kW power units where the parallelization of several chargers allows
to modulate the delivered power. Hence, CANopen protocol is suitable for fast communication
with several power units to be controlled through a CANopen master.

MPU series are dotted with a graphical user interface that can play either the role of a master or a
CAN bus sniffer. Both functionalities could be used to debug communication issues if another
master than Watt&Well GUI is used. In this document, test examples are given for MPU 25 kW
unidirectional charger where the master is run from Python script.

Common terms

MPU Modular Power Unit

G2v Grid-to-Vehicle

GUI Graphical User Interface

CAN Control Area Network

CANopen Communication protocol to open and communicate with the Control Area
Network

EDS Electronic Data Sheet

Index 4-digit hexadecimal code used to identify an object: 16-bits

Sub-index Decimal code to further identify object’'s parameters: 8-bits

oD Object Dictionary

Object Communication message

PDO Process Data Object

RPDO Receive PDO

TPDO Transmit PDO

SDO Service Data Object

NMT Network Management

WATT v Document Reference:

y' Application Note — Interfacing with CAN bus \pu series AN0OO1
8(\/VEI_I_ rev AA

2 References and Required Tools

2.1 Documents

Reference Document Title
MPU-R3-500-63-FD User Guide | Modular Power Unit - User guide
MPU-R3-500-63-FD Datasheet MPU-25 Datasheet

2.2 CAN interface

For PC/CAN interface, it is recommended to use one of the listed below transceivers:
e National instruments: NI USB-8473 or NI USB-9861
o IXXAT: USB-to-CAN V2 compact
o Kuvaser: Leaf Light V2

2.3 Communication development environment

In this document Python 2.7 is used to set up communication examples. It can be downloaded
from : https://www.python.org/downloads/release/python-2717/.

The library canopen 1.0.0 is required. Installation steps are listed below:

e Install pip following instructions from: https://pip.pypa.io/en/stable/installing/
e Install canopen library by running the following in command-line tool

| $ pip install canopen |

2.4 GUI environment
The GUI is compatible with National instruments interface and Windows 10/7/Vista/XP/200.

NI-CAN drivers must be installed. They can be downloaded from : http://www.ni.com/download/ni-

can-18.5/8074/en/

User is referred to GUI user guide documents Modular Power Unit - User guide for further

information.

2.5 Monitoring software

To spy the CAN bus for test or debug purposes, it is recommended to install the following

software:

e National instruments: NI MAX (Measurement and Automation Explorer) is included in

NI-drivers package.

o |IXXAT: canAnalyser (https://www.ixxat.com/support/file-and-documents-download/demo-

software-tools)

https://www.python.org/downloads/release/python-2717/
https://pip.pypa.io/en/stable/installing/
http://www.ni.com/download/ni-can-18.5/8074/en/
http://www.ni.com/download/ni-can-18.5/8074/en/
https://www.ixxat.com/support/file-and-documents-download/demo-software-tools
https://www.ixxat.com/support/file-and-documents-download/demo-software-tools

WAT T Document Reference:

‘ Application Note — Interfacing with CAN bus \pu series AN0OO1
8(\/VEI_I_ ‘\ rev AA

2.6 Network configuration and CAN wiring

Physical CAN network must be equipped with 2 termination resistors of 120 Q each. The smallest
CAN network is composed of 2 nodes; the GUI node (master) and the BMPU node:

GUI Node 120 Q I_JI] >< CAN network X l:]lZO Q Charger Node

Figure 1 Network nodes

2.7 CAN wiring

For CAN wiring, refer to MPU datasheet MPU-25 Specification on Interfaces section.

2.8 CAN node ID

For all devices a unique node ID must be selected. MPU-25 takes its CAN address at boot based
on an addressing connector on the front panel.

Address CAN ID
1(001) 80
2 (010) 81
3 (011) 82
4 (100) 83
5 (101) 84
6 (110) 85
Default (000 or 111) 86

Values 0 and 1 on address refer respectively to OV and 24V on the corresponding connector pin.
If no connector is connected to the charger, the default node ID is 86 (0x56).
Message frame IDs are defined in as: frame ID = offset ID + node ID

Example: TPDOO offset is 0x180 and node ID is 0x56 then TPDOO ID will be 0x1D6
=0x180+0x56

2.9 Messages description

For messages description, user is referred to MPU25 specification CAN communication section.
In the same section, status word, fault word and data definition are presented. Taking note of CAN
message description is required to understand the following section.

The user may also refer to CANopen literature for detailed description of CANopen specific
messages as PDO (Processes Data Objects), SDO (Service Data Objects) ...etc.

Document Reference:
Application Note — Interfacing with CAN bus \pu series AN0OO1

rev AA

WATT |
RUVELL

3 Communication tests
The master node ID is 1 and charger node ID is 80 (address set to 001).

3.1 Communication using Python script

Follow the instructions step by step to set up a correct CAN communication using Python script

Step 1 Set the testbench :
Test setup
e Supply 24V to MPU-25
e Connect Emergency shutdown (24V)
e Connect the addressing connector in such way to obtain the address 80 (001)
e Connect CAN transceiver to MPU-25 CAN RJ45 connector and to a PC
e Connection to AC power is not required and not recommended for

communication tests. However, without AC power the charger will go to fault
state when Charging mode is requested.

Step 2 Start new Python script :
Network
configuration e MPU-25 electronic datasheet (pu.eds) must be in the same folder as Python

script. Otherwise, file path must be specified in the script when EDS is needed.

e Import required libraries

import canopen
import sys
import os
import traceback
import time

e Configure network and connect

try:
Start with creating a network representing one CAN bus
network = canopen.Network()

Specifiy CAN tranceiver type, CAN channel and baud rate
network.connect(bustype="ixxat', channel=0, bitrate=500000)
network.connect(bustype="nican’, channel='"CANO', bitrate=500000)

Specifiy node address and the corresponding Electronic Datasheet
network.add_node(80, './pu.eds',upload_eds=False)
node = network[80]

Check network
network.check()

e Send Master Heartbeat message (ID 701) for bootup (MasterStatus=0)

Master boot up message (MasterStatus =0)
network.send_message(0x701, [0x0])

e Read PDO configuration from node

Read PDO configuration from node
node.tpdo.read()
node.rpdo.read()

e Change master state de operational (MasterStatus=5)

Change master state to operational (NMT start)

WATT
&V/VELL

Document Reference:
Application Note — Interfacing with CAN bus \pu series AN0OO1

rev AA

network.send_message(0x701, [0x5])

e Check slave heartbeat

Check slave heartbeat
node.nmt.wait_for_heartbeat()
assert node.nmt.state == 'OPERATIONAL'

Step 3 e Send sync message with a selected period
Sync # Transmit SYNC every 100 ms
message network.sync.start(0.1)
Step 4 e Configure RPDOO message data to be sent.
Sending # RPDO[1] message definition
RPDOs .
node.rpdo[1]['setPoints.state_ Request].raw = 5;
node.rpdo[1]['setPoints.dcdc_currentOutSP'].raw = 6300;
node.rpdo[1]['setPoints.dcdc_voltageOutSP'].raw = 4000;
node.rpdo[1]['setPoints.pfc_iGridMaxSP'].raw = 4500;
= Be careful with setpoint unities (refer to 3.2.8). In the following
example, dcdc_currentOutSP (DC output current) is set to 6300 which
corresponds to 6300 of 10 mA -> 6300 x 0.01A=63 A, then the
requested value is 63 A.
= state Request is set to 5 for start charging (refer to 3.2.7).
e Start sending RPDOO periodically (every 0.1 s in this example)
Start RPDO[1]
node.rpdo[1].start(0.1)
print 'RPDOL1 is transmitted’, \n'
Step 5 e Reading TPDOOs. The following example is given for TPDOO and the
Reading apporach can be reiterated for other TPDOs.
TPDOs

Read values from TPDOJ[1]
node.tpdo[1].wait_for_reception()
print 'Receiving TPDO1...", \n'

StatusWord = node.tpdo[1]['measurements.state_Current].raw
print 'Status Word :', StatusWord

FaultWord = node.tpdo[1]['measurements.faultWord'].raw
print 'Fault Word :', FaultWord, \n'

= TPDOs are configured to be transmitted after every nth sync message.
The numberof sync message to be received before transmission of each
TPDO is defined by the Transmission Type parameter.

= Transmission type for each TPDO are defined in Table 1.

WAT T Document Reference:

Application Note — Interfacing with CAN bus \pu series AN0OO1
&WELL rev AA
Step 6 e Reading emergency codes and critical fault world
Emergency

codes reading | # Read emergency codes
print 'Emergency codes reading...', '\n’

error_code = [emcy.code for emcy in node.emcy.active]
print 'Error code ', error_code

error_register = [emcy.register for emcy in node.emcy.active]
print 'Error register :', error_register

error_data = [emcy.data for emcy in node.emcy.active]
print 'Critical Fault Word :', error_data, '\n'

Step 7 e To read any object in the OD (parameter, signal, measurement ...etc),

SDO reading an expedited SDO is used. The target object can be either stated by its
variable name or index.

o If the object is a part of a category, its variable and category names must
be stated or its index and sub-index (see below pfc_VintMin example).

Read variables using SDO
software_version = node.sdo['Manufacturer software version'].raw
print 'Software version:', software_version, '\n'

VintMinRef =node.sdo['commandSaturation']['pfc_VintMin'].raw
print 'DC bus voltage min reference:', VintMinRef, \n'

Step 8 Testing ¢ Run Python script
e Execution result is shown below

WATT
&V/VELL

Application Note — Interfacing with CAN bus

Document Reference:

MPU series AN0O01

rev AA
& Python 2.7.17 Shell - m| p
File Edit Shell Debug Options Window Help
Software version: 2.20r
DC bus voltage min reference: 750.0 SDO readlng
RPDOL1 is transmitted
Receiving TPDOL...
[Status Word : €149
Fault Word : 1073741524
Receiving TPDOZ2...
C voltage : 11
C current : 74
C side power : 1
DC side availabale current : 1568%
Receiving TPDO3...
TPDOs reading
DC voltage : O
DC current : 3
DC side power : 0O
ax BAC current : 4500
Receiving TPDO4...
in DC wvoltage setpoint : 0
ax DC voltage setpoint : 5500
ax DC current setpoint : 2000
ax DC powsr setpoint : 25000
Emergency codes reading...
Error code : (] Emergency codes reading
Error register : []
lcritical Fault Word : []
going to exit... stopping..
>>> |
Ln: 109 Cq
e Status Word interpretation : 6149 = 1100000000101
bl | bl5 | bl4 | b13 | b12 | b1l | b10 | b9 | b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl | bC
6
b3
1
010 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1

System Mode is Charging (System Mode=5) as requested by Status Request in

RPDOO. Also, b11=1 and b12=1 means that PFC and DCDC PWMs are on.

e To read measurement from TPDOs, unit conversion is necessary. As an
example, the returned value for DC side available current is 0x1999
(decimal 6553) and regarding its unit in Error! Reference source not

found. (10 mA), its physical value is 6553 x0.01A = 65.53 A.

WAT T Document Reference:

Application Note — Interfacing with CAN bus \1pu series ANOO1
8(\NELI_ rev AA

3.2 CAN messages monitoring

In order to check Python script test functioning, MPU-25 GUI could be used in spy mode. The
connection of a second CAN (NI USB-8473) transceiver is necessary to communicate with the
GUL.

To charger
To PC (used by GUI)

Figure 2 Transceiver configuration for CAN monitoring

Set-point autosend period and Slow Meas period must be set to 0 ms to cease transmission from
GUI to charger (to be in spy mode) and slave address must be set to 80.

& settings ? X
Communication configuration
CAN Port :
|cano -
Baud Rate:
500 kBit/s -
Slave CAN address
& o
Monitor CAN address
e |
Set-point autosend period
| ms
Slow Meas Period
i -
Update p: at the beginning of the ication

Apply

Figure 3 GUI settings

After Python script execution:

WAT T Document Reference:

Application Note — Interfacing with CAN bus \pu series AN0OO1
&WEI_I_ rev AA

e Blue led of Charging mode must be lighted up on the charger and on the GUI.
e Green LEDs of PWM On DC/DC and PWM On PFC must be lighted up.

e The software version must be the same returned by Python script.

B VPU Monitor - u] X
System Interface Mode Module Help

{2 AutoTests

Staty
CNG-POWRXDS NodelD : 80 Standsy Stopping Passive Precharge Active Precharge] Charging PWM On DC/DC PWM On PFC Thermal limit Load Z limit Power limit Safe C TimeOut Fault
| v
[Current and Voltage (Output) \/” Current and Voltage
Temperature:
Firm ity Refresh
Grid Voltage RMS 11 v Temp PFC L 00 cC
Output DC command
Grid Current RMS 07 A Temp PFC MS v2 °c
Standsy Charge
Grid Power 18 Temp DCOC2 L 18.8
Pre-Charge
Output Temp Extra 0.0 oC
DCDC Available Out Current 200 A
Qutput Voltage 0.0 19.1 C
DC Current [A)
200
I 20 & Output Current 0.0 187 C
DC Voltage [V]
i 300.0 18.7
[| 100.00 3 00w
Max Input Grid Current [A] 8. C
450
i 002
- PFC +400V 31
Switching Frequency 115.0 Kz
PFC 400V 28 v
Fhase 180 deg
DODC +400V 28V
Ctrl P1 Out (beta) 10
DCOC -400v 22 v Vint Ref 750.0 v

Figure 4 MPU-25 GUI in spy mode

e To check that RPDOO message has been correctly received, it is possible to verify the
received values of RPDOO objects in the CANopen Device Manger (see Figure 5).

10 |

WATT
&V/VELL

Application Note — Interfacing with CAN bus

& CANopen Device Manager - O X
Eile
Name ~
0x23 dcdc_vOutRampDown 200.0000
0x24 safeC_RestartDelay 0.0200
0x25 vintChargedMarginVsinput 1.1500
v 0x4600 setPoints
Qo0 oo uh_inrl (4
0x01 state_Request 5
0x02 dcdc_currentOutSP 6300
0x03 dcdc_voltageQutSP 4000
0x04 dcdc_powerQutsSP 25000
| 0x05 pfc_iGridMaxsP 4500 |
Device Profile Area v
Index Sub-Index Type Memory Type Data
[ox600 2] ot 2] umts -] ram &
Store parameter Download log Read
Restore factory settings Erase log Update all values (@
e

Figure 5 CANopen Device Manager

Document Reference:

MPU series AN0O01
rev AA

e Another way to spy on CAN messages is the utilization of NI Measurement and
Automation Explorer (NI MAX). This software is included in NI-drivers package and
installed automatically with the drivers. Configuration steps to monitor the CAN bus are

as follows:

= Start NI MAX

= Go to Devices and Interfaces - NI

corresponding interface)

CAN > USB-xxxx-> CANO (or select the

;2 CANO - Measurement & Automation Explorer

File Edit View Tools Help

> | B Port Properties

~ B My System Bus Monitor Properties
[l Data Neighborhood :
~ & Devices and Interfaces Attribute Value
« @ NI-CAN B Interface Name ~ CANO
« W |JSB-8473 H Location Port 1
E3 CANO B Transceiver High-Speed
«< USB-8473 (High-Speed CAN) "USBY | B Transceiver Name Philips TIA1...
&1 Software H Baud Rate 125.000 kB...
k& Remote Systems B Sample Point 87.5%
E BTRO 0x03
E BTR1 0x1C

Description

Interface name assigned by the user
Interface location on the board
Transceiver type

Transceiver brand name

Baud rate selected by the user

Sample point within the bit transmission
Bit Timing Register 0 value

Bit Timing Register 1 value

»% Hide Help
& Back Jas)

NI-CAN Port ™

What do you

want to do?

+ Run the Bus
Monitor

+ Change Port
Pronertias

v

= In Properties, set the baud rate to 500.

11 |

Document Reference:
Application Note — Interfacing with CAN bus \pu series AN0OO1

rev AA

WAI'T
QVVELL ¢

Port Properties X
Settings
Interface | CAMND w
Baud Rate | 500.0 ~ | kBaud

Advanced >>

Cancel Help

= Click on Bus Monitor to start CAN bus monitoring. All frames generated by Python
script must be visible.

@ NI-CAN BusMonitor - O X
hAx Port Settings Upclate Rate Busload
Intedace: |CAND Baud Rate : |500.000 kBaud 1000 ms
Ak D Len.. Data Time 3t.. Rate dtMin dt Max # (total) Help
%80 i 2614.18.. 1000 0100 0100 23
0x00 a 01 FF100000000010 17697e... - - - 1 Optiong
0x100 6 070000000010 261396.. 143 0700 0700 3
%250 7 05CC10B8 088411 261400 10,00 0100 0.100 20 Bus Statistics
0x2D0 i 070012 00 00 00 CF 07 261380.. 200 0500 0500 4 .
0300 8 000002 0000009411 2614718.. 1000 9575e-. 0100 23 SirerDeEls
0x4D0] 0000 7C15 D0 07 A8 B1 261368.. 091 1.700 1.100 H I:I
X500] £000 45 11 00 00 00 00 261211, 31949 1264e-. 0681 B0
OxB50] 2300 45 11 0000 20 C1 261211 342711 1GB5e-. 0681 B0
%701 1 il 261110, 8474 1180e-. 1180e-. 2
%750 1 i1 2627.41. 123 3B40e-. 0833 3245
Ligtzn Only
Stop
Reset
Close

Figure 6 NI-CAN BusMonitor

If Sync message is sent every 0.1s, then TPDO1 with transmission type of 5 will be
transmitted every 0.5 s (the value is comprised between dt Min and dt Max) which
gives a rate of 2 (the message is transmitted twice per second).

12 |

WAT T Document Reference:

&WELL Application Note — Interfacing with CAN bus \pu series AN0OO1

rev AA

3.3 Critical fault world interpretation

When critical fault occurs, Emergency message will return the Critical Fault Word as 5 bytes data
(byte 3 to byte 7, keep in mind that byte 3 is not used).

To interpret the received data and determine which fault has occurred, bits must be compared to
the fault word defined in 3.2.7.

The Critical Fault Word in the example below is decoded to illustrate how critical faults are
determined. To create fault condition, AC power is disconnected

Emergency codes reading...
Error code : [63281]

Error register : [16]
Critical Fault Word : ['"\x00\xc0\x01'\x00%\x00"']

Byte 7 Byte 6 Byte 5 Byte 4

Bits

Co 01 00 00
I I

| | 23 | 22 | 21 | 20 19 [18 [17 | 16 31 | 30 | 29 | 28 27 | 26 | 25 | 24

7 [6 [5 [4 | 3 [2 1 | o0 9 | 8
11 [ofoJoJoJoJoJoJoJoJo[olJoJola]lofJoJoJof[oJoJoJoJofJoJoJoJoJoJoTlo

Order of bytes and bits is due to CANopen endianness. Refer to section 4 for more details.

Then, occurred faults are determined by bits 6, 7 and 8 which corresponds to faults
UV_PhaseAVoltageRMS, UV_PhaseBVoltageRMS and UV_PhaseCVoltageRMS. It corresponds
to the created fault where there is no voltage at charger AC input.

13 |

Document Reference:
Application Note — Interfacing with CAN bus \pu series AN0OO1

rev AA

WATT |
QWVELL ¢

4 Endianness

All numerical data types consisting of multiple bytes are transferred in CANopen (whether in SDO
or PDO) in the Little-Endian format. Bytes are ordered by significance and the lower significant
bytes come first. It means that last byte of binary representation of the multibyte datatype is stored
first.

For example, the 32-bit hexadecimal number « OXCDE11COA» will be transmitted in CAN bus as
follows

| oA | 1¢c | E1 | cb |

@& NI-CAN BusMonitor - O X
hAx Fort Settings Update Rate Busload
Interface : | CAND Baud Rate : 1000 ~ ms 0%
ArblD Len.. Data dt hin dt hax # (total) Help
0xB0 0 0.100 0.100 23
0xID0 & 0518 00 00 00 40 0.700 0.700 3 Options
0250 7 05 CC10B6 0B 9411 0.100 0.100 21
w200 8 09 00 4400 01 00 CF 07 0.500 0.500 5 Bus Statistics
0x3D0 @ 00 00 04 00 00 00 84 11 142727 998 9.975e-002 0.100 23 _
0cdD0 8 00 00 7C 15 DO 07 A8 61 13.8728 091 1.100 1.100 2 Eirer DEEE
D0 8 B0 00 45 11 0QLOO0.0N 121548 400.00 1.857e-003 5.312e-002 59
0650 8 230045 1 121539 40866 1596e-003 5.320e-002 59 I:l
D701 1 05 117518 8474, 1.180e-004 1.180e-004 2
0750 1 05 17.9482 1151 1.160e-004 0.138 217

[Listen Onky

Feset

Close

14 |

