
HIGH POWER SERIES

MPU series AN001 rev AA

Application Note – Interfacing with CAN bus

Table of Contents

1 Introduction ... 2

2 References and Required Tools ... 3

2.1 Documents .. 3
2.2 CAN interface ... 3
2.3 Communication development environment ... 3
2.4 GUI environment ... 3
2.5 Monitoring software ... 3
2.6 Network configuration and CAN wiring .. 4
2.7 CAN wiring .. 4
2.8 CAN node ID ... 4
2.9 Messages description ... 4

3 Communication tests .. 5

3.1 Communication using Python script .. 5
3.2 CAN messages monitoring.. 9
3.3 Critical fault world interpretation .. 13

4 Endianness .. 14

Product application note. The given values are susceptible to change without prior notice.

contact@wattandwell.com
+33 1 75 95 11 50

usa@wattandwell.com
+1 346-223-0379

wattandwell.com
Revision date: 01/2021

mailto:contact@wattandwell.com
http://www.wattandwell.com/
http://www.wattandwell.com/

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

2

1 Introduction
This document describes CANopen protocol structure and configuration for MPU series chargers.
The main purpose is to explain how to build necessary CAN messages to control Modular Power
Unit without employing any specific CANopen stack.

MPU series chargers are 25 kW power units where the parallelization of several chargers allows
to modulate the delivered power. Hence, CANopen protocol is suitable for fast communication
with several power units to be controlled through a CANopen master.

MPU series are dotted with a graphical user interface that can play either the role of a master or a
CAN bus sniffer. Both functionalities could be used to debug communication issues if another
master than Watt&Well GUI is used. In this document, test examples are given for MPU 25 kW
unidirectional charger where the master is run from Python script.

Common terms

MPU Modular Power Unit
G2V Grid-to-Vehicle
GUI Graphical User Interface
CAN Control Area Network
CANopen Communication protocol to open and communicate with the Control Area

Network
EDS Electronic Data Sheet
Index 4-digit hexadecimal code used to identify an object: 16-bits
Sub-index Decimal code to further identify object’s parameters: 8-bits
OD Object Dictionary
Object Communication message
PDO Process Data Object
RPDO Receive PDO
TPDO Transmit PDO
SDO
NMT

Service Data Object
Network Management

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

3

2 References and Required Tools

2.1 Documents

Reference Document Title

MPU-R3-500-63-FD User Guide Modular Power Unit - User guide

MPU-R3-500-63-FD Datasheet MPU-25 Datasheet

2.2 CAN interface

 For PC/CAN interface, it is recommended to use one of the listed below transceivers:

• National instruments: NI USB-8473 or NI USB-9861

• IXXAT: USB-to-CAN V2 compact

• Kvaser: Leaf Light V2

2.3 Communication development environment

In this document Python 2.7 is used to set up communication examples. It can be downloaded
from : https://www.python.org/downloads/release/python-2717/.

The library canopen 1.0.0 is required. Installation steps are listed below:

• Install pip following instructions from: https://pip.pypa.io/en/stable/installing/

• Install canopen library by running the following in command-line tool

2.4 GUI environment

The GUI is compatible with National instruments interface and Windows 10/7/Vista/XP/200.
NI-CAN drivers must be installed. They can be downloaded from : http://www.ni.com/download/ni-
can-18.5/8074/en/

User is referred to GUI user guide documents Modular Power Unit - User guide for further
information.

2.5 Monitoring software

To spy the CAN bus for test or debug purposes, it is recommended to install the following
software:

• National instruments: NI MAX (Measurement and Automation Explorer) is included in
NI-drivers package.

• IXXAT: canAnalyser (https://www.ixxat.com/support/file-and-documents-download/demo-
software-tools)

$ pip install canopen

https://www.python.org/downloads/release/python-2717/
https://pip.pypa.io/en/stable/installing/
http://www.ni.com/download/ni-can-18.5/8074/en/
http://www.ni.com/download/ni-can-18.5/8074/en/
https://www.ixxat.com/support/file-and-documents-download/demo-software-tools
https://www.ixxat.com/support/file-and-documents-download/demo-software-tools

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

4

2.6 Network configuration and CAN wiring

Physical CAN network must be equipped with 2 termination resistors of 120 Ω each. The smallest

CAN network is composed of 2 nodes; the GUI node (master) and the BMPU node:

Figure 1 Network nodes

2.7 CAN wiring

For CAN wiring, refer to MPU datasheet MPU-25 Specification on Interfaces section.

2.8 CAN node ID

For all devices a unique node ID must be selected. MPU-25 takes its CAN address at boot based
on an addressing connector on the front panel.

Address CAN ID

1 (001) 80

2 (010) 81

3 (011) 82

4 (100) 83

5 (101) 84

6 (110) 85

Default (000 or 111) 86

Values 0 and 1 on address refer respectively to 0V and 24V on the corresponding connector pin.

If no connector is connected to the charger, the default node ID is 86 (0x56).

Message frame IDs are defined in as: frame ID = offset ID + node ID

Example: TPDO0 offset is 0x180 and node ID is 0x56 then TPDO0 ID will be 0x1D6
=0x180+0x56

2.9 Messages description

For messages description, user is referred to MPU25 specification CAN communication section.
In the same section, status word, fault word and data definition are presented. Taking note of CAN
message description is required to understand the following section.

The user may also refer to CANopen literature for detailed description of CANopen specific
messages as PDO (Processes Data Objects), SDO (Service Data Objects) …etc.

CAN network 120 Ω 120 Ω GUI Node Charger Node

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

5

3 Communication tests
The master node ID is 1 and charger node ID is 80 (address set to 001).

3.1 Communication using Python script

Follow the instructions step by step to set up a correct CAN communication using Python script

Step 1
Test setup

Set the testbench :

• Supply 24V to MPU-25

• Connect Emergency shutdown (24V)

• Connect the addressing connector in such way to obtain the address 80 (001)

• Connect CAN transceiver to MPU-25 CAN RJ45 connector and to a PC

• Connection to AC power is not required and not recommended for
communication tests. However, without AC power the charger will go to fault
state when Charging mode is requested.

Step 2
Network
configuration

Start new Python script :

• MPU-25 electronic datasheet (pu.eds) must be in the same folder as Python
script. Otherwise, file path must be specified in the script when EDS is needed.

• Import required libraries

import canopen
import sys
import os
import traceback
import time

• Configure network and connect

try:
 # Start with creating a network representing one CAN bus
 network = canopen.Network()

 # Specifiy CAN tranceiver type, CAN channel and baud rate
 network.connect(bustype='ixxat', channel=0, bitrate=500000)
 # network.connect(bustype='nican', channel='CAN0', bitrate=500000)

 # Specifiy node address and the corresponding Electronic Datasheet
 network.add_node(80, './pu.eds',upload_eds=False)
 node = network[80]

 # Check network
 network.check()

• Send Master Heartbeat message (ID 701) for bootup (MasterStatus=0)

 # Master boot up message (MasterStatus =0)
 network.send_message(0x701, [0x0])

• Read PDO configuration from node

 # Read PDO configuration from node
 node.tpdo.read()
 node.rpdo.read()

• Change master state de operational (MasterStatus=5)

 # Change master state to operational (NMT start)

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

6

▪ TPDOs are configured to be transmitted after every nth sync message.

The numberof sync message to be received before transmission of each

TPDO is defined by the Transmission Type parameter.

▪ Transmission type for each TPDO are defined in Table 1.

 network.send_message(0x701, [0x5])

• Check slave heartbeat

 # Check slave heartbeat
 node.nmt.wait_for_heartbeat()
 assert node.nmt.state == 'OPERATIONAL'

Step 3
Sync
message

• Send sync message with a selected period

 # Transmit SYNC every 100 ms
 network.sync.start(0.1)

Step 4
Sending
RPDOs

• Configure RPDO0 message data to be sent.

 # RPDO[1] message definition

 node.rpdo[1]['setPoints.state_Request'].raw = 5;
 node.rpdo[1]['setPoints.dcdc_currentOutSP'].raw = 6300;
 node.rpdo[1]['setPoints.dcdc_voltageOutSP'].raw = 4000;
 node.rpdo[1]['setPoints.pfc_iGridMaxSP'].raw = 4500;

• Start sending RPDO0 periodically (every 0.1 s in this example)

 # Start RPDO[1]
 node.rpdo[1].start(0.1)
 print 'RPDO1 is transmitted', '\n'

Step 5
Reading
TPDOs

• Reading TPDO0s. The following example is given for TPDO0 and the
apporach can be reiterated for other TPDOs.

 # Read values from TPDO[1]
 node.tpdo[1].wait_for_reception()
 print 'Receiving TPDO1...', '\n'

 StatusWord = node.tpdo[1]['measurements.state_Current'].raw
 print 'Status Word :', StatusWord

 FaultWord = node.tpdo[1]['measurements.faultWord'].raw
 print 'Fault Word :', FaultWord, '\n'

▪ Be careful with setpoint unities (refer to 3.2.8). In the following

example, dcdc_currentOutSP (DC output current) is set to 6300 which

corresponds to 6300 of 10 mA → 6300 x 0.01A=63 A, then the

requested value is 63 A.

▪ state_Request is set to 5 for start charging (refer to 3.2.7).

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

7

Step 6
Emergency
codes reading

• Reading emergency codes and critical fault world

 # Read emergency codes
 print 'Emergency codes reading...', '\n'

 error_code = [emcy.code for emcy in node.emcy.active]
 print 'Error code :', error_code

 error_register = [emcy.register for emcy in node.emcy.active]
 print 'Error register :', error_register

 error_data = [emcy.data for emcy in node.emcy.active]
 print 'Critical Fault Word :', error_data, '\n'

Step 7
SDO reading

• To read any object in the OD (parameter, signal, measurement …etc),
an expedited SDO is used. The target object can be either stated by its
variable name or index.

• If the object is a part of a category, its variable and category names must
be stated or its index and sub-index (see below pfc_VintMin example).

 # Read variables using SDO
 software_version = node.sdo['Manufacturer software version'].raw
 print 'Software version:', software_version, '\n'

 VintMinRef =node.sdo['commandSaturation']['pfc_VintMin'].raw
 print 'DC bus voltage min reference:', VintMinRef, '\n'

Step 8 Testing

• Run Python script

• Execution result is shown below

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

8

• Status Word interpretation : 6149 = 1100000000101

b1
6
…
b3
1

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1

System Mode is Charging (System Mode=5) as requested by Status Request in
RPDO0. Also, b11=1 and b12=1 means that PFC and DCDC PWMs are on.

• To read measurement from TPDOs, unit conversion is necessary. As an
example, the returned value for DC side available current is 0x1999
(decimal 6553) and regarding its unit in Error! Reference source not
found. (10 mA), its physical value is 6553 x0.01A = 65.53 A.

SDO reading

TPDOs reading

Emergency codes reading

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

9

3.2 CAN messages monitoring

In order to check Python script test functioning, MPU-25 GUI could be used in spy mode. The
connection of a second CAN (NI USB-8473) transceiver is necessary to communicate with the
GUI.

Figure 2 Transceiver configuration for CAN monitoring

Set-point autosend period and Slow Meas period must be set to 0 ms to cease transmission from
GUI to charger (to be in spy mode) and slave address must be set to 80.

Figure 3 GUI settings

After Python script execution:

To charger

To PC (used by the master
from Pyhton script)

To PC (used by GUI)

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

10

• Blue led of Charging mode must be lighted up on the charger and on the GUI.

• Green LEDs of PWM On DC/DC and PWM On PFC must be lighted up.

• The software version must be the same returned by Python script.

Figure 4 MPU-25 GUI in spy mode

• To check that RPDO0 message has been correctly received, it is possible to verify the
received values of RPDO0 objects in the CANopen Device Manger (see Figure 5).

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

11

Figure 5 CANopen Device Manager

• Another way to spy on CAN messages is the utilization of NI Measurement and
Automation Explorer (NI MAX). This software is included in NI-drivers package and
installed automatically with the drivers. Configuration steps to monitor the CAN bus are
as follows:

▪ Start NI MAX
▪ Go to Devices and Interfaces → NI CAN → USB-xxxx→ CAN0 (or select the

corresponding interface)

▪ In Properties, set the baud rate to 500.

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

12

▪ Click on Bus Monitor to start CAN bus monitoring. All frames generated by Python
script must be visible.

Figure 6 NI-CAN BusMonitor

If Sync message is sent every 0.1s, then TPDO1 with transmission type of 5 will be
transmitted every 0.5 s (the value is comprised between dt Min and dt Max) which
gives a rate of 2 (the message is transmitted twice per second).

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

13

3.3 Critical fault world interpretation

When critical fault occurs, Emergency message will return the Critical Fault Word as 5 bytes data
(byte 3 to byte 7, keep in mind that byte 3 is not used).

To interpret the received data and determine which fault has occurred, bits must be compared to
the fault word defined in 3.2.7.

The Critical Fault Word in the example below is decoded to illustrate how critical faults are
determined. To create fault condition, AC power is disconnected

 Byte 7 Byte 6 Byte 5 Byte 4

C0 01 00 00
Bits 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Order of bytes and bits is due to CANopen endianness. Refer to section 4 for more details.

Then, occurred faults are determined by bits 6, 7 and 8 which corresponds to faults
UV_PhaseAVoltageRMS, UV_PhaseBVoltageRMS and UV_PhaseCVoltageRMS. It corresponds
to the created fault where there is no voltage at charger AC input.

Application Note – Interfacing with CAN bus

Document Reference:

MPU series AN001
rev AA

14

4 Endianness

All numerical data types consisting of multiple bytes are transferred in CANopen (whether in SDO
or PDO) in the Little-Endian format. Bytes are ordered by significance and the lower significant
bytes come first. It means that last byte of binary representation of the multibyte datatype is stored
first.

For example, the 32-bit hexadecimal number « 0xCDE11C0A» will be transmitted in CAN bus as
follows

0A 1C E1 CD

